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Abstract

In this paper, a new ghost-fluid method for interfaces of finite thickness is described. It allows to compute efficiently
turbulent premixed flames with a finite thickness in low-Mach flows. A level set algorithm is used to track accurately
the flame and to define the overlapping region where the burned and unburned gases satisfy the jump conditions. These
algorithms are combined with a fractional-step method to alleviate the acoustic CFL constraint. The full algorithm is ver-
ified for simple flame-vortex interactions and it is validated by computing a turbulent flame anchored by a triangular
flame-holder. Finally, the algorithm is applied in the LES of an industrial lean-premixed swirl-burner.
© 2006 Elsevier Inc. All rights reserved.
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1. Motivation and objectives

Large-eddy simulation of premixed combustion is a computational challenge, because complex diffusion
and reaction processes often occur in very thin layers. The interaction of these processes with turbulence deter-
mines the main properties of the flame brush, such as its burning velocity or its thickness. In turbulent flows,
the large vortices wrinkle the flame brush and increase the flame surface, while the small scales may penetrate
into the flame and increase the flame thickness. In both cases, the turbulence leads to an increase in the burn-
ing velocity. This feature has to be captured by a combustion model. Even if the turbulent scales increase the
flame thickness, the flame brush remains difficult to resolve on LES meshes. Numerically, the premixed flame
brush is very close to an interface, but its non-zero thickness must be taken into account to represent the
flame—turbulence interactions properly.

In state-of-the-art combustion models, the issue of thin flames is overcome in very different ways. The thick-
ened-flame model (TFLES) [1] artificially thickens the flame brush, and the source terms in the species and
energy equations are corrected to recover the correct burning velocity. The thickening factor to resolve the
flame on a usual unstructured mesh is on the order of 20. This factor can be decreased slightly if naturally
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thicker quantities are used to represent the flame. This is the case in flame surface density approaches [2], but
the thickening factor remains large. Instead of transporting reacting scalars, the flame can also be described
using a flamelet hypothesis. That is, the reaction zone in the flame is considered to retain a laminar structure.
The problem is then reduced to finding the position of the thin reaction layer. This is the principle of the G-
equation model [3,4] in which a level set technique is used to track accurately the flame front. The displace-
ment velocity of the level set is usually given by a model based on asymptotic analysis or experimental corre-
lations [4,5]. Then, the level set has to be coupled with the Navier—Stokes solver by imposing the temperature
profile in the flame brush. Often, Navier—Stokes solvers are not able to deal with large density and momentum
gradients, and the imposed temperature profile has to be resolved on more than one cell, typically on the order
of five cells.

In all the described models, the flame brush is more or less thickened, and the interactions with the smallest
resolved scales are modified. The proposed method overcomes this artificial thickening using a numerical
method that better couples the level set technique and the Navier—Stokes solver. This method is based on
the ghost-fluid method (GFM) [6], which tracks discontinuities without introducing any smearing or numer-
ical instabilities. While the original GFM has been developed to track infinitely thin discontinuities, the pres-
ent method extends the GFM formalism to deal with interfaces of finite thickness.

2. A ghost-fluid method for thin flame brushes
2.1. The classical variable-density method for low-Mach number flows
In reacting flows, the density is not constant, and incompressible methods cannot be used. Taking the low-

Mach limit without the constant-density assumption, the filtered Navier—Stokes equations reduce to the con-
tinuity and momentum equations:

op (i) = 1
LV (pi) =0 m
PRV (pi) = ~VP+V -t 2)

where ~ and ~ denote the LES filtering and the mass weighted filtering, respectively. p is the density, u is the
velocity, P is the pressure and t is the total stress tensor. In (1) and (2), the density is usually given from the
combustion model. The pressure in (2) is not the thermodynamic pressure but rather a Lagrange multiplier
called dynamic pressure. Similar to incompressible flows, these equations can be solved using a fractional-step
method. A time-staggered discretization of (1) is given as:

pn+3/2 _ pn+l/2

At
If the density is known at ¢ and ¢ , this equation provides a constraint on the velocity divergence. The
first step of the fractional-step method is to advance the momentum equation to:

+ V- (pi!) = 0. (3)

n+1/2 n+3/2

pu* — pu’

Y + V- (pﬁn+1/2ﬁn+1/2) =V-t. (4)
In the second step, the momentum is corrected with the dynamic pressure gradient:
pﬁr1+1 _ pﬁ* i l/2
= —_vpl2 5
At )
The dynamic pressure P is found solving the variable-density Poisson equation:
532 2
wpr2 P TP T L (%), 6
V-V AR +Atv (pu™) (6)

Solving (4)—(6) for a propagating premixed flame may present several challenges. First, since the flame essen-
tially occurs on the sub-filter scale, the filtered velocity and momentum flux may have steep gradients, which
are difficult to integrate in the momentum equation. This may lead to spurious numerical instabilities. Second,
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the density variations in the flame may also be large. These density variations have to be integrated in the RHS
of the Poisson equation, which may lead to the generation of non-physical velocity waves immediately prop-
agated throughout the whole computational domain.

2.2. The ghost-fluid method principle

The ghost-fluid method [6] applied to premixed combustion removes the steep gradients in the spatial deriv-
atives by solving two continuous problems in the unburned and burned gases, and by satisfying jump condi-
tions at the interface, as shown in Fig. 1. To impose the jump conditions, the two continuous problems have to
be solved in an overlapping region around the flame brush. The level set formalism is well adapted to track the
flame position and to define the regions where each problem has to be solved.

The main idea of the present method is to advance the momentum in the unburned and burned gases inde-
pendently and then to use a modified Poisson equation to impose the jump conditions and the continuity
constraint.

2.3. Decomposition of the conservative variables in a premixed flame brush

If the jumps in filtered density and momentum through the flame brush are discretized on few points, they
can be represented with a single function « that is unity in the burned gases and equal to zero in the unburned
gases:

p =0py+ (1 - &)pua (7)

pu = appty + (1 — ) pylly. (8)
The Favre average in (8) is defined with respect to the density in the burned and unburned gases:

pbﬁb = PpUv, puﬁu = Pylu- (9>

This decomposition of (7) and (8) can be derived rigorously, assuming that the instantaneous flame is infinitely
thin. Then, the instantaneous density and momentum can be decomposed identically:

p = py +opl, (10)
pu = p,u, + ofpu]. (11)

where o is a Heavyside function, and [p] and [pu] denote the density and momentum jumps. Filtering both
equations gives:

ﬁ:f)u+&[ﬁ]v (12)
pu = pyu, + ofpul. (13)

Eq. (7) is equivalent to (12), but (8) is equivalent to (13) if «[pu] is assumed to be equal to a[pu]. The error
resulting from this assumption is localized in the region where & is non-constant, i.e., in a grid cell, and it de-

"

Fig. 1. The ghost-fluid method decomposition. ¢, and ¢y, are the pre- and post-interface states, the unburned and burned gases in the case
of premixed combustion, and [¢] is the jump.
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pends on the fluctuations of the momentum jump [pu]. Using the jump conditions derived in Section 2.6, this
jump can be rewritten as [p](u, + Si,N), where S ,N is the intrinsic flame speed. This implies that the error is
proportional to the fluctuations of the speed in the unburned gases u,. In practical applications, the combus-
tion takes place in the corrugated flamelet regime or in the thin reaction zones regime. In these regimes, the
turbulent fluctuations are small compared to the jump created by thermal expansion in the reaction zone of the
flame. The decomposition (8) is therefore a good approximation. Nevertheless, for very high Reynolds number
flows where the flame cannot be considered as a jump compared to the turbulent structures or for flames with
low heat release, the decomposition (8) may produce errors.

2.4. The continuity constraint

The continuity constraint (1) can be reformulated using (7) and (8). Further assuming that the continuity is
satisfied in the burned and unburned gases leads to:
o5 [oi
_oc_|_@.va(:()7 (14)
o [p]
where [p] and [pu] denote the density and momentum jumps. The continuity constraint therefore leads to a
propagation equation for the flame profile. If @ is only a function of the level set field G, then (14) is also a
constraint on Gt
oG |pu
o [p]

2.5. The coupled Poisson equation

The fractional-step algorithm presented in Section 2.1 is supposed to be satisfied for the burned, unburned,
and global quantities through the flame brush. Then, if the pressure gradient is decomposed similar to the con-
servative variables:

VP =aVP, + (1 —a)VP,, (16)
the pressure Laplacian of (6) becomes:
V-VP=2aV VP, + (1l —a)V-VP, +[VP] - Va. (17)

The two first terms on the RHS of (17) are the pressure Laplacians in the burned and unburned gases multi-
plied by the profile function. The third term is the pressure gradient jump which is related to the momentum
jump as shown in Section 2.6. The two Laplacians can be expressed as functions of the density variations and
of the predicted velocity divergence on both sides of the flame. This leads to the coupled Poisson equation:

v-vF:[vF]-vwi(

= a%+(1—a)°p“+av-ﬁbﬁ:+(l—oc)Vﬁuﬁu*) (18)

ot of
Then, the pressure gradients in the unburned and burned gases are found by using the expressions:
VP, =VP—a|VP], VP,=VP+ (1-a)[VP]. (19)

It should be noted that VP, and VP, are not real pressure gradients but simply momentum corrections to
impose the divergence and the jump constraints.

2.6. Jump conditions

The density jump [p] is given by the thermo-chemistry in the flame, and it is an input of the computation.
The momentum jump is obtained from the continuity equation expressed in a Galilean frame that is moving
at a speed Ug in the reference frame. The flame is then steady in this frame, and the continuity equation
becomes:
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V- (p(a - Us)) = 0. (20)
Integrating this equation in the flame brush leads to:
[pil = [p]Us. (21)

The frame speed Ug can be expressed as the sum of a flow speed and an intrinsic flame speed. Taking these
values in the unburned gases gives:

where N is the flame brush normal:
VG
N=———. (23)
VG|
The level set propagation equation given by (15) can therefore be rewritten in the usual form:
oG .
o + (0, + STuN) - VG = 0. (24)

Finally, the jump of the gradient of the dynamic pressure [VP] is obtained taking the difference of the pressure
correction steps in the burned and unburned gases:

(V] = 4. (9] — [pi]). (25)

2.7. The combustion model

To determine the burning velocity in the unburned gases St ,, the LES model developed by Pitsch [7] is
used. This model is an extension of the G-equation model originally derived for the Reynolds-averaged
Navier—Stokes (RANS) formalism [3,4]. The burning velocity St is given by the relation [5]:

2 2 2 2

_ . A . A D

Ste—Suu_ BCG A (B LD, (26)
SL,u 2b18C[7G lF 2b18c[‘G lF SL,ulF

where Sp, is the laminar burning velocity, A is the filter width, /r is the laminar flame thickness, C; is the
Smagorinsky constant, Sc; g = 0.5 is a turbulent Schmidt number, and b; =2.0 and b3 = 1.0 are two model
constants. The turbulent diffusivity D g is computed using a Smagorinsky-type model:
o= CAu,
b SCt,G '

(27)
where u), is the intensity of the sub-filter velocity fluctuations.
2.8. The full algorithm

The full algorithm consists of the following steps:

Step 1: Advance the level set equation from G"*'"? to G"*3"?

The propagation equation given by (24) is advanced with estimates of a"*' and Sﬁl. These esti-
mates can be given by a first-order Adams—Bashforth scheme or simply by taking the values of
the previous time step u}, and St . The second method is used in the presented test cases and gives
satisfactory results. The time integration is done using a 3-step back and forth error correction
(BFEC) method [8], and the spatial discretization is done using a first-order upwind scheme. The
combination of these two integration techniques leads to a low-dispersion and low-dissipation
scheme that is second-order in space and time [8]. Then, to keep the level set field G equal to a
distance function, a fast-marching reinitialization method [9] is used.



V. Moureau et al. | Journal of Computational Physics 221 (2007) 600-614 605

Step 2: Compute the flame brush profile @'*/> and the density field p"+3/
These two quantities are computed using a user-defined profile for &+*2, which is a function of the
distance to the flame front. If the instantaneous flame is largely under-resolved on the mesh, which is
the case in most practical applications, then the thickness of the flame profile @'+3/? has to be of the
order of the grid spacing. For the turbulent cases of Section 3, the profile was chosen to be
(1 + sin(w x G/5))/2 in the flame front, where 6 was taken approximately equal to six times the grid
spacing. This leads to a thermal thickness, i.e., the thickness of the temperature jump based on the
maximum gradient, of approximately two cells. Then, the density is computed according to (7), where
the density in the burned and the unburned gases is taken constant.

Step 3: Advance the momentum in the unburned and burned gases p,u¥ and p,uX
The momentum in the unburned and in the burned gases is advanced independently following (4) and
using an implicit Gauss-Seidel method with relaxation. The spatial scheme is second-order central
and conserves the kinetic energy [10].

Step 4: Compute the pressure gradient jump [VP]
This jump is computed according to (25), in which the momentum jump at ¢

Step 5. Solve the Poisson equation
This constant-coefficient Poisson equation (18) is solved using the algebraic multi-grid solver of the
Hypre library from Lawrence Livermore National Laboratory [11].

Step 6: Correct the unburned and burned momentum
The pressure gradients in the unburned and burned gases are computed using (19) and are then used to
correct the momentum in the unburned and burned gases.

"+ 1is evaluated using (22).

It may be noted that compared to a classical low-Mach solver with a combustion model based on a level set
transport, this algorithm only requires the solution of an additional set of momentum equations. Moreover,
since no jumps appear in the spatial derivatives, this algorithm usually converges faster than a classical solver
and it does not require any sub-stepping which would dramatically reduce the efficiency.

3. Results

In this section, the proposed method is verified by computing 2D flame-vortex interactions. Then, the
method is applied to the LES computation of a turbulent flame anchored by a triangular flame holder. Finally,
LES computations of a reacting industrial lean-premixed swirl-burner are presented and discussed.

3.1. Flame—vortex interactions

The proposed method is verified by computing 2D flame-vortex interactions. This unsteady laminar test
case has been studied experimentally [12], and it has been extensively used to build DNS databases and com-
bustion regime diagrams [13], and to validate combustion models [1]. Recently, Lessani and Papalexandris [14]
have used this test to verify a low-Mach fractional-step method.

The flame—vortex computations performed in this study consist of a steady laminar premixed flame inter-
acting with a vortex dipole convected at the laminar burning speed. The parameters used in this study are the
same as in Ref. [14] (Le =1, r/d = 5.5, u'/SL = 10.6), and these parameters are close to one case of the data-
base of Poinsot et al. [13] (Le = 1.2, r/d = 5, u'/Sy. = 12). The flame profile & has been extracted from the 1D
computations of Ref. [14]. The initial conditions are given in Fig. 2a. The distances are non-dimensionalized
by the flame thickness. The inlet is located at ¥ =0 and the inlet velocity is set equal to the burning velocity
St.. Before the interaction with the vortex dipole, the flame is steady and located at ¥ = 100. When the vortices
arrive in the vicinity of the flame, their vorticity decreases rapidly as they wrinkle the flame front. Between the
vortices, the flow speed increases, whereas on the sides of the dipole the flow speed decreases. It leads to the
formation of an unburned gas pocket as shown in Fig. 2b. The form of the flame on this figure is very close to
the results of Ref. [13].

For a verification of the proposed method, a mesh refinement study is performed. Three Cartesian meshes
of dimensions 64 x 256, 128 x 256 and 256 x 512 are used. The discretization of the flame profile for the



606 V. Moureau et al. | Journal of Computational Physics 221 (2007) 600-614

' I B B AL T R AP TA TR Y
i 1 ! i
R it i ,:.l,'v fi

160~ — 6ot T
rEgh

a *=0 b =21

Fig. 2. Flame-vortex interactions. Gy-level set (bold), density contours (thin lines, around Gy) and velocity vectors (arrows) for the finest
mesh (256 x 512). The time is non-dimensionalized by the chemical time scale §/Sy. (a) * = 0; (b) * = 21.
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Fig. 3. Flame-vortex interactions. Discrete flame profiles for the different mesh resolutions.

different mesh resolutions is shown in Fig. 3. It may be noted that on the coarse grid the flame is resolved on
only three points. Snapshots of the Gy-level set are presented in Fig. 4. The results obtained with the three
different resolutions are in very good agreement, and they show the same behavior as those obtained by
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Fig. 4. Flame-vortex interactions. Gy level set for 3 different meshes and Q criterion [17] contours for the finer mesh.

Poinsot et al. [13]. However, the results are quite different from those of Lessani and Papalexandris [14], in
which no pocket of unburned gas is formed. These differences can be explained by the fact that the formation
of this pocket is very sensitive to the numerical dissipation and to the actual burning velocity of the flame. In
Ref. [14], a predictor-corrector technique and second-order centered schemes are used as in the proposed
method. Nevertheless, the time integration does not ensure the kinetic-energy conservation and the flame
propagation relies on a reaction-diffusion balance, which requires a fine resolution to be accurate. The
kinetic-energy conservation and the flame propagation are the main impetus for using a level set formalism
coupled to kinetic-energy conserving schemes in the present method.

3.2. Triangular flame-holder
3.2.1. Description

This configuration consists of a turbulent premixed flame anchored to a triangular flame-holder. It has been
studied experimentally [15,16] with the objective of providing data for the validation of RANS and LES
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Table 1

Triangular flame-holder parameters

Re Ui ¢ S. 0 Pu P pul P
33,000 20 m/s 1 0.41 m/s 0.37 mm 1.19 kg/m? 0.14 kg/m? 8.5

Fig. 5. Triangular flame-holder. Flame (transparent) and Q criterion [17] contours.

combustion models. This burner is operated at atmospheric conditions with a stoichiometric propane—air mix-
ture. The inlet speed u;, and the main flame characteristics are given in Table 1. A 3D computation of this
configuration has been performed with an unstructured mesh of approximatively 2 million hexahedral cells.
The flame profile & has been chosen to give a constant thermal thickness approximately equal to twice the filter
width near the flame-holder. A snapshot of the computed flame and of the coherent structures of the flow is
presented in Fig. 5. The Q criterion [17], which is the second invariant of the deformation tensor, is used to
visualize the coherent structures. It compares the magnitude of the rotation and shear rates. Most of the vor-
tices are created in the shear zone between the flame-holder recirculation and the burned gases accelerated by
the thermal expansion. These vortices, which are originally transverse, are elongated by the burned gases and
become streamwise in the tail of the recirculation zone.

3.2.2. Progress-variable statistics

The values of the mean progress-variable ¢ given by the 3D LES computation and extracted from OH-LIF
images are compared in Fig. 6. The contours are in good agreement, demonstrating that the dynamics of the
flame are captured accurately by the LES computation. The four dashed lines in Fig. 6 represent the locations
chosen to compare the mean and RMS progress-variable profiles. The results of these are given in Fig. 7. The
RMS profiles are reconstructed from the mean progress variable assuming that the flame is infinitely thin [18]:

Cms = Ve(l —@). (28)

Fig. 6. Triangular flame-holder. Experimental (top) and LES (bottom) mean progress-variable contours.
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The mean and RMS progress-variable profiles, shown in Fig. 7, are in very good agreement with experimental
data. The discrepancies in the RMS profiles far from the flame-holder are probably due to the fact that the

filtered flame thickness is taken constant in the entire domain.

3.3. Industrial lean-premixed swirl-burner

3.3.1. Description

In this section, the proposed method is applied in a simulation of a complex swirl-burner shown in Fig. 8. It
features a plenum, a swirl-injector and a combustion chamber. A lean premixed mixture of methane and air is

Fig. 8. Swirl-burner. Instantaneous flame and azimuthally-projected stream-lines.

Table 2

Swirl-burner parameters

Re Uin [ S 0 Pu P Pu/ Pv
45,000 24 m/s 0.75 0.23 m/s 0.6 mm 1.14 kg/m® 0.18 kg/m? 6.3
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injected at atmospheric pressure in the plenum, and the turbulent flame is anchored at the outlet of the swirler.
The swirl plays an important role in the stabilization of the lean premixed flame. The main parameters of
the burner are given in Table 2. Velocity LDV measurements [19] are available for several locations in the
combustion chamber. This burner has been computed by [19] using the thickened-flame model (TFLES)
[1], and their results are in good agreement with experimental data.

Two different unstructured meshes have been used to perform the LES computations. The first is based
mostly on tetrahedral elements and is the same as in [19]. The second is based mostly on hexahedral elements.
Both meshes consist of approximately three million control volumes. Given these meshes, the computed tur-
bulent flames can be located in the LES combustion diagram (Fig. 9) proposed by [7]. These flames are at the
interface between the thin reaction zones regime and the broken reaction zones regime. The combustion model
described in Section 2.7 is actually valid only for the corrugated and the thin reaction zones regimes. The flame
profile & has been defined to give a thermal thickness approximately equal to twice the filter width.

The flame structure and the coherent structures of the flow are presented in Fig. 10. The vortices are formed
in two main regions. The first region is the sudden enlargement on the exterior of the swirler, and the second
region is the head of the injector, where the separation of the flow occurs. While the exterior vortices are of

3

10
corrugated thin reaction broken reaction
flamelets zones zones
10° A=lo ga=zi .
. = <
wrinkled \ n | E I/'
Flomalon nedis : ’ I
10'
)
~
<
5. 10’
>, .
i laminar flamelets
10" A=3 Hexs
Rey =1
DNS a
n A=
-2 | | | 1 |
;4 107 3 N ) | 2 3
10 10 10 10 10 10 10
KRA

Fig. 10. Swirl-burner. Flame (left) and coherent structures in the flame colored by the distance to the axis (right).
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small intensity, the vortices in the core region strongly affect the flame brush. The interior vortices are of the
same nature as the precessing vortex core (PVC) described by [19] for the non-reactive flow.

3.3.2. Velocity statistics
The mean and RMS velocities from the LES computations are compared to the experimental data in Figs.
11-16. The comparisons are performed for five 1D profiles at different distances from the chamber head. Both

1.5 mm 15 mm 25 mm 35 mm
‘ T T ‘ T ‘ T ‘ T T ‘ T ‘ T ‘ T
0.04 —

y (m)
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Y
- +_~~0o
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Fig. 11. Swirl-burner. Mean axial velocity profiles. O, experiments; —, LES on the hexahedral mesh; ----, LES on the tetrahedral mesh.
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Fig. 12. Swirl-burner. Axial velocity RMS profiles. O, experiments; —, LES on the hexahedral mesh; ----, LES on the tetrahedral mesh.
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Fig. 13. Swirl-burner. Mean radial velocity profiles. O, experiments; —, LES on the hexahedral mesh; ----, LES on the tetrahedral mesh.

mean and RMS profiles are in a very good agreement, especially in the near field of the injector. The 1.5 mm
RMS profiles in Fig. 16 clearly show the velocity fluctuations due to the exterior and interior vortices. The
exterior vortices are well captured on both meshes by the present method, whereas they do not seem to be
captured in [19]. This difference may be due to the thickened-flame combustion model or to the spatial differ-

encing used in [19].
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14. Swirl-burner. Radial velocity RMS profiles.
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Fig. 15. Swirl-burner. Mean tangential velocity profiles. O, experiments; —, LES on the hexahedral mesh; ----, LES on the tetrahedral
mesh.
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Fig. 16. Swirl-burner. Tangential velocity RMS profiles. O, experiments; —, LES on the hexahedral mesh; ----, LES on the tetrahedral
mesh.

4. Conclusions

A new ghost-fluid method for premixed flames of finite thickness has been developed. This method provides
a robust and accurate coupling of the G-equation model with a low-Mach Navier—Stokes solver while allowing
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for the use of kinetic-energy conserving schemes. The combination of these state-of-the-art algorithms results
in a very accurate description of the flame transport and ensures very low numerical dissipation. The proposed
method has first been verified using the basic test case of laminar flame—vortex interactions. The results dem-
onstrate the high accuracy of the method even on coarse meshes. Furthermore, the method has been applied in
the LES computation of a turbulent flame anchored by a triangular flame-holder. Computed mean and RMS
progress-variable profiles are compared to the experimental data showing good agreement. Finally, the
method has been used to compute the combustion process in a complex swirl-burner. The dynamic behavior
of the device is discussed and mean and RMS velocity profiles are compared with experimental measurements.
The very good agreement obtained for this complex geometry assesses the high fidelity of the method.
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